CD24 enrichment protects while its loss increases susceptibility of juvenile chondrocytes towards inflammation
نویسندگان
چکیده
BACKGROUND Diseases associated with human cartilage, including rheumatoid arthritis (RA) and osteoarthritis (OA) have manifested age, mechanical stresses and inflammation as the leading risk factors. Although inflammatory processes are known to be upregulated upon aging, we sought to gain a molecular understanding of how aging affects the tissue-specific response to inflammation. In this report, we explored the role of cluster of differentiation 24 (CD24) in regulating differential inflammatory responses in juvenile and adult human chondrocytes. METHODS Differential cell-surface CD24 expression was assessed in juvenile and adult chondrocytes along with human induced pluripotent stem cell (hiPSC)-derived neonatal chondrocytes through gene expression and fluorescence-activated cell sorting (FACS) analyses. Loss of function of CD24 was achieved through silencing in chondrocytes and the effects on the response to inflammatory cues were assessed through gene expression and NFκB activity. RESULTS CD24 expression in chondrocytes caused a differential response to cytokine-induced inflammation, with the CD24high juvenile chondrocytes being resistant to IL-1ß treatment as compared to CD24low adult chondrocytes. CD24 protects from inflammatory response by reducing NFκB activation, as an acute loss of CD24 via silencing led to an increase in NFκB activation. Moreover, the loss of CD24 in chondrocytes subsequently increased inflammatory and catabolic gene expression both in the absence and presence of IL-1ß. CONCLUSIONS We have identified CD24 as a novel regulator of inflammatory response in cartilage that is altered during development and aging and could potentially be therapeutic in RA and OA.
منابع مشابه
Monosodium Urate and Tumor Necrosis Factor-α Increase Apoptosis in Human Chondrocyte Cultures
Monosodium urate and tumor necrosis factor-α, are two potent mediators of separate inflammatory response pathways in arthritic joints where inflammation may be accompanied by the loss of chondrocyte vitality via apoptosis. To address this possibility in vitro, chondrocyte cultures were employed to determine the extent to which monosodium urate and recombinant TNF-α altered the frequency of apop...
متن کاملAssociation of CD24V/V Genotype with Susceptibility and Progression of Multiple Sclerosis in Iranian Population
A single nucleotide polymorphism (SNP) in CD24 has been associated with multiple sclerosis (MS) in a population based study. This SNP results in the replacement of alanine (CD24A) by valine (CD24V) at amino acid 57 in the resulting polypeptide chain. In the current study, the genotyping of this SNP and its contribution to MS in 217 patients and 200 healthy individuals of an Iranian population w...
متن کاملDownregulation of HMGB1 by miR-103a-3p Promotes Cell Proliferation, Alleviates Apoptosis and Inflammation in a Cell Model of Osteoarthritis
Background: MiR-103a-3p is a small non-coding RNA and has been reported to be involved in osteogenic proliferation and differentiation, but the role of miR-103a-3p in human osteoarthritis (OA) remains unclear. Objectives: In this study, we aimed to explore its function and molecular target in chondrocytes during OA pathogenesis. Materials an...
متن کاملCD24 is expressed in gastric parietal cells and regulates apoptosis and the response to Helicobacter felis infection in the murine stomach.
CD24 is expressed in the putative stem cells within several tissues and is overexpressed in gastric and colonic adenocarcinomas. Perturbed CD24 expression may therefore alter the response of gastrointestinal epithelia to damage-inducing stimuli that induce cancer. We have investigated the effects of CD24 deletion on gastric responses to Helicobacter felis infection and γ-irradiation using CD24-...
متن کاملCD24 tracks divergent pluripotent states in mouse and human cells
Reprogramming is a dynamic process that can result in multiple pluripotent cell types emerging from divergent paths. Cell surface protein expression is a particularly desirable tool to categorize reprogramming and pluripotency as it enables robust quantification and enrichment of live cells. Here we use cell surface proteomics to interrogate mouse cell reprogramming dynamics and discover CD24 a...
متن کامل